Lesson 24. Tangent Planes and Normal Lines

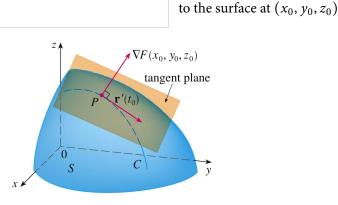
0 Warm up

Example 1. Let *P* be the point (2, 0, 1) and $\vec{v} = \langle 1, -2, 5 \rangle$.

- a. Find parametric equations of the line that passes through *P* and is parallel to \vec{v} .
- b. Find an equation of the plane through point *P* with normal vector \vec{v} .

1 Tangent planes and normal lines in 3D

- Consider a surface with equation F(x, y, z) = k
- The gradient $\nabla F(x_0, y_0, z_0)$ is



- The tangent plane to the surface F(x, y, z) = k at (x_0, y_0, z_0) is the plane that
 - passes through (x_0, y_0, z_0) and
 - has normal vector $\nabla F(x_0, y_0, z_0)$
- Equation of tangent plane to F(x, y, z) = k at (x_0, y_0, z_0) :

Example 2. Find an equation of the tangent plane to the ellipsoid $\frac{x^2}{9} + y^2 + \frac{z^2}{4} = 3$ at the point (-3, 1, -2).

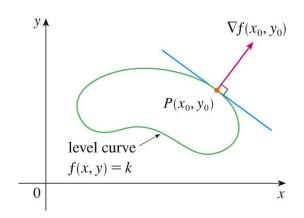
Example 3. Find an equation of the tangent plane to the surface $z = 2x^2 + y^2$ at the point (1,1,3).

- The normal line to the surface F(x, y, z) = k at point (x_0, y_0, z_0) is the line that
 - passes through (x_0, y_0, z_0) and
 - is perpendicular to the tangent plane (i.e., is parallel to $\nabla F(x_0, y_0, z_0)$)
- Parametric equations of the normal line to F(x, y, z) = k at (x_0, y_0, z_0) :

Example 4. Find the normal line to the ellipsoid $\frac{x^2}{9} + y^2 + \frac{z^2}{4} = 3$ at the point (-3, 1, -2).

2 Tangent lines in 2D

• The **tangent line to the curve** f(x, y) = k at (x_0, y_0) is given by



Example 5. Let $g(x, y) = x^2 + y^2 - 4x$. Find the tangent line to the curve g(x, y) = 1 at the point (1, 2).