Lesson 24. Tangent Planes and Normal Lines

0 Warm up

Example 1. Let P be the point $(2,0,1)$ and $\vec{v}=\langle 1,-2,5\rangle$.
a. Find parametric equations of the line that passes through P and is parallel to \vec{v}.
b. Find an equation of the plane through point P with normal vector \vec{v}.

1 Tangent planes and normal lines in 3D

- Consider a surface with equation $F(x, y, z)=k$
- The gradient $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\text { to the surface at }\left(x_{0}, y_{0}, z_{0}\right)
$$

- The tangent plane to the surface $F(x, y, z)=k$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is the plane that
- passes through $\left(x_{0}, y_{0}, z_{0}\right)$ and
- has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$
- Equation of tangent plane to $F(x, y, z)=k$ at $\left(x_{0}, y_{0}, z_{0}\right)$:

Example 2. Find an equation of the tangent plane to the ellipsoid $\frac{x^{2}}{9}+y^{2}+\frac{z^{2}}{4}=3$ at the point $(-3,1,-2)$.

Example 3. Find an equation of the tangent plane to the surface $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.

- The normal line to the surface $F(x, y, z)=k$ at point $\left(x_{0}, y_{0}, z_{0}\right)$ is the line that
- passes through $\left(x_{0}, y_{0}, z_{0}\right)$ and
- is perpendicular to the tangent plane (i.e., is parallel to $\left.\nabla F\left(x_{0}, y_{0}, z_{0}\right)\right)$
- Parametric equations of the normal line to $F(x, y, z)=k$ at $\left(x_{0}, y_{0}, z_{0}\right)$:
\square

Example 4. Find the normal line to the ellipsoid $\frac{x^{2}}{9}+y^{2}+\frac{z^{2}}{4}=3$ at the point $(-3,1,-2)$.

2 Tangent lines in 2D

- The tangent line to the curve $f(x, y)=k$ at $\left(x_{0}, y_{0}\right)$ is given by

Example 5. Let $g(x, y)=x^{2}+y^{2}-4 x$. Find the tangent line to the curve $g(x, y)=1$ at the point $(1,2)$.

